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The three-dimensional finite-difference time-domain �3D-FDTD� method is developed and implemented in
the case of oblique incidence in order to study biperiodic structures that are finished according to the third
direction. The perfectly matched layer �PML� is adapted to the developed algorithm. The electromagnetic fields
of Maxwell’s equations in the main grid and in the PML media are transferred from the E-H domain to the
mapped P-Q domain. The modified Maxwell’s equations are implemented by the split-field method �SFM�.
Several tests are made and presented in order to verify and demonstrate the accuracy of our codes. The
obtained results are in good agreement with published ones obtained by other methods. The originality of this
paper comes, first from the fact that it brings a complete development of the used algorithm, and second, from
the study of the spectral response of a radar dome based on annular aperture arrays perforated into a perfect
conductor plate.
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I. INTRODUCTION

The dielectric and metallic periodic structures have re-
cently attracted wide attention for various applications in
nanotechnology such as electromagnetic band-gap structures
�1,2�, enhanced transmission �3,4�, frequency selective sur-
faces �5,6�,… . The study and the design of these structures
require numerical models before making expensive and dif-
ficult experiments. These methods are numerous: a lot of
them are frequential methods such as the Fourier modal
method �FMM�, the finite element method �FEM�, and the
method of moment �MOM�. The wide band analysis by these
methods requires one to carry out one study by frequency. In
addition, some of these methods such as FMM and MOM are
limited to the study of structures having simple geometries.
Methods that work in the time domain are then more attrac-
tive for the spectral analysis. Let us quote, for example, the
finite-difference time domain �FDTD�, used in this paper,
and the FEM method working in the time domain. Using
these time-domain methods, a wide band characterization
can be obtained from one temporal calculation via a simple
Fourier transform.

The FDTD method, introduced by Yee, is a powerful and
general tool for the resolution of differential equations sys-
tem �7�. It is easy to be numerically implemented �8�. The
implementation is based on the discretization of the differen-
tial equations by means of centered finite differences. In
principle, it can take into account any geometry. For the nor-
mal incidence case, the FDTD method is widely used to
study the periodic structures. In this case, the periodic
boundary conditions �PBCs�, i.e., the Floquet-Block condi-
tions, can be applied easily without any modification of the

traditional Yee’s schema �9–11�. For the oblique incidence,
the application of the PBCs explicitly reveals the frequency
of the electromagnetic field. This is in contradiction with the
temporal character of the FDTD algorithm. To adapt the
FDTD in order to treat such a problem �the oblique inci-
dence�, Veysoglu et al. introduced the field transformation
method �FTM� �12�. Thus, the field components in Max-
well’s equations are transferred from the E-H domain to the
mapped P-Q domain. The direct implementation of the
modified Maxwell’s equations without modifying the Yee
schema remains impossible. Several techniques of imple-
mentation were proposed �see Chapter 13 of Ref. �8��, for
example, the split-field method �SFM� �13� used in this
work, and the exponential time differencing �ETD� proposed
recently by �14�. Since Veysegol, several researchers worked
on the FDTD in the oblique incidence case by using the SFM
technique. Wu et al. studied the photonic crystal filters by the
FDTD in oblique incidence. Oh and Escuti implemented the
two-dimensional �2D� FDTD for the oblique analysis of an-
isotropic periodic structures �15�.

The work presented in this paper is a complete 3D-FDTD
implementation in the oblique incidence using the SFM for
the analysis of the biperiodic structures that are finished ac-
cording to the third direction. The developed algorithm is
especially devoted to the study of the enhanced transmission
through nanoapertures engraved into metallic layer or to the
study of finite 3D photonic crystals, chiefly, the determina-
tion of the dispersion relation for such structure.

The electromagnetic field components in Maxwell’s equa-
tions are transferred from the E-H domain to the mapped
P-Q domain. The modified Maxwell’s equations are dis-
cretized with centered differences and then implemented by
the SFM. The open medium into the third direction is delim-
ited by perfectly matched layers �PML� that are also adapted
for the oblique case. The equations in the PML media are
also modified, expressed in the mapped �P-Q� domain and
implemented using the SFM method.
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The validation of our code is provided via a set of tests
that consists, first, in an analytical verification of the reflec-
tion and transmission coefficients �Fresnel coefficients�. Sec-
ond, a 2D diffraction problem is studied in the case of a
perfect metal according to the incidence angle and to the
polarization. Finally, a 3D problem is also examined in the
case of a dielectric structure versus the polarization, the
angle of incidence, and the azimuthal angle. For both these
two last cases �2D and 3D�, comparisons with already pub-
lished results in TE and TM polarizations are done �16,17�.
Before the conclusion, we apply our codes to extend the
study on the enhanced transmission through annular aperture
arrays presented by Van Labeke et al. �6� to the case of a
perfect conductor in order to design a metallic radar radome
�a hull or dome used to protect or to hid a radar or an an-
tenna�.

We emphasize here the fact that, in spite of the existence
of some papers where the basis of the method are already
published, the originality of our paper comes from the fact
that two treated examples are veritable 3D structures that
need full 3D calculations. In most of the published studies,
the handled objects are two dimensional such as lamellar
gratings or infinitely thin periodic arrays �18�. In Ref. �14�,
3D calculations in oblique incidence are carried out for ap-
plications in the microwave domain. In that paper, the ETD
technic is employed but the modified PML equations are not
presented in addition to the fact that this technic cannot be
extended to the case of dispersive materials. In Ref. �15�, the
SFM technic is developed for anisotropic media but no 3D
simulations are presented.

The final part of this paper is devoted to an original study
of a 3D periodic structure where both the azimuthal and the
incidence angles vary. This study leads to results allowing
the design of a radome based on annular aperture arrays
pierced into metallic screens.

II. FDTD FORMULATION IN OBLIQUE INCIDENCE

The structure under study is a biperiodic array along the
two directions x and y �see Fig. 1�. It is limited along the
third direction �z�. Let us consider a plane wave propagation
along the k� vector as described in Fig. 1.

The direction of propagation, i.e., the direction of the k�
vector, is defined in the �xyz� coordinates system by the Eu-
ler angles � and �. The electric and magnetic fields of the
incident electromagnetic field can be written as

E� = E� 0ej�kxx+kyy+kzz�, �1a�

H� = H� 0ej�kxx+kyy+kzz�, �1b�

where kx= �
vi

sin � cos �, ky = �
vi

sin � sin �, kz= �
vi

cos���, and
vi is the light speed in the incident medium.

For the study of periodic structures such as photonic crys-
tals �see Fig. 2�, only one elementary cell can be considered
to describe the behavior of the infinite structure. This can be
obtained via the periodic boundary conditions �PBCs� of
Floquet-Bloch that are imposed to the electric and magnetic
components.

These PBCs are then written as following:

E� �x + a,y,z,t� = E� �x,y,z,t�ejkxa, �2a�

E� �x,y + b,z,t� = E� �x,y,z,t�ejkyb, �2b�

H� �x,y,z,t� = H� �x + a,y,z,t�e−jkxa, �2c�

H� �x,y,z,t� = H� �x,y + b,z,t�e−jkyb, �2d�

where a and b are the periodicity in the x and y directions,
respectively. These latest equations explicitly depend on the
value of � through both kx and ky. Accordingly, they cannot
be directly used in the FDTD algorithm because this later
operates in the time domain and not in the frequency one. To
bypass this � dependence in the phase terms, a new set of
field variables is introduced:

P� = E� e−j�kxx+kyy�, �3a�

Q� = H� e−j�kxx+kyy�. �3b�

The periodic boundary conditions for the transformed
field variables can now be expressed as

P� �x + a,y,z,t� = P� �x,y,z,t� , �4a�

P� �x,y + b,z,t� = P� �x,y,z,t� , �4b�

Q� �x,y,z,t� = Q� �x + a,y,z,t� , �4c�
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k

FIG. 1. Sketch of the biperiodic structure that is illuminated by
a plane wave propagating along the k� vector defined by its Euler
angles � and �.
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FIG. 2. Schematic of a biperiodic structure and the unit cell used
in the FDTD calculations.
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Q� �x,y,z,t� = Q� �x,y + b,z,t� . �4d�

The modified Maxwell’s equations in the mapped P-Q do-
main are obtained by injecting Eqs. �3� in the classical Max-
well’s equations explained in the E-H domain.

In order to simplify the numerical FDTD implementation,
most FDTD codes �especially the commercial codes� are
built in a general way that assumes a PML media for all the
computational domain �maingrid+PML�. This avoids the
special processing of the flat interfaces between the main
grid and the PML. Thereby, the electric conductivity � and
magnetic loss �* are fixed to zero in the main grid while
their values increase in the PML regions. This technique is
highly memory and time consuming because each field com-
ponent is split in two for the PML medium. For this last
reason, we have developed our code to treat separately the
two parts with additional equations that connect the two me-
dia. The implementation of the FTM+SFM for the main grid
is already presented in several works �see Ref. �8� and refer-
ences therein�. Consequently, only the implementation of the
modified PML equations will be presented in the following;
the main grid equations can be easily obtained by replacing
� and �* by zero.

It is clear that, because of the x and y periodicity, the PML
has to be implemented only in the z direction. As mentioned
above, each field component is split in two parts except for

the z component. Thus, in the PML E� �or H� � has five com-
ponents. Let Exy, Exz, Eyx, Eyz, and Ez be these components

�idem for H� �. These field components are then transferred
from the E-H domain to the mapped P-Q domain through
Eqs. �3�.

By replacing the E and H components of Eqs. �3� in the
classical Maxwell’s equations, one obtains the modified
equations expressed in the mapped �P-Q� domain,

�
�Pxy

�t
=

�Qz

�y
+ j

�

vi
sin � sin �Qz, �5a�

��
�

�t
+ �z�Pxz = −

�

�z
�Qyx + Qyz� , �5b�

��
�

�t
+ �z�Pyz =

�

�z
�Qxy + Qxz� , �5c�

�
�Pyx

�t
= −

�Qz

�x
− j

�

vi
sin � cos �Qz, �5d�

�
�Pz

�t
=

�

�x
�Qyx + Qyz� −

�

�y
�Qxy + Qxz�

+ j
�

vi
sin � sin ��Qyx + Qyz�

− j
�

vi
sin � cos ��Qxy + Qxz� , �5e�

�
�Qxy

�t
= −

�Pz

�y
− j

�

vi
sin � sin �Pz, �5f�

��
�

�t
+ �

z
*�Qxz =

�

�z
�Pyx + Pyz� , �5g�

��
�

�t
+ �

z
*�Qyz = −

�

�z
�Pxy + Pxz� , �5h�

�
�Qyx

�t
=

�Pz

�x
+ j

�

vi
sin � cos �Pz, �5i�

�
�Qz

�t
=

�

�y
�Pxy + Pxz� −

�

�x
�Pyx + Pyz�

+ j
�

vi
sin � sin ��Pxy + Pxz�

− j
�

vi
sin � cos ��Pyx + Pyz� . �5j�

One should notice that in the case of normal incidence
��=0�, the previously modified equations turn into the tradi-
tional PML equations of Bérenger explained in the E-H do-
main. However, in oblique case, the additional terms �where
� arises explicitly� are equivalent to additional time-
derivative terms �ATDTs� that appear on the right-hand side
of Eqs. �5�. These ATDT terms need a special treatment to be
implemented. In fact, they can be bypassed by splitting the
field components as

Pxy = Pxya +
sin � sin �

vi�
Qz, �6a�

Pxz = Pxza, �6b�

Pyz = Pyza, �6c�

Pyx = Pyxa −
sin � cos �

vi�
Qz, �6d�

Pz = Pza +
sin � cos �

vi�
�Qyx + Qyz� −

sin � sin �

vi�
�Qxy + Qxz� ,

�6e�

Qxy = Qxya −
sin � sin �

vi�
Pz, �6f�

Qxz = Qxza, �6g�

Qyz = Qyza, �6h�

Qyx = Qyxa +
sin � cos �

vi�
Pz, �6i�

Qz = Qza +
sin � sin �

vi�
�Pxy + Pxz� −

sin � cos �

vi�
�Pyx + Pyz� .

�6j�
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One can see from Eqs. �6b�, �6c�, �6g�, and �6h� that it is
not necessary to split the components Pxz, Pyz, Qxz, and Qyz.

Substituting Eqs. �6� into the left-hand side of Eqs. �5�
results in equations that allow the calculations of the a fields
through the total fields,

�
�Pxya

�t
=

�Qz

�y
, �7a�

��
�

�t
+ �z�Pxza = −

�

�z
�Qyx + Qyz� , �7b�

��
�

�t
+ �z�Pyza =

�

�z
�Qxy + Qxz� , �7c�

�
�Pyxa

�t
= −

�Qz

�x
, �7d�

�
�Pza

�t
=

�

�x
�Qyx + Qyz� −

�

�y
�Qxy + Qxz� , �7e�

�
�Qxya

�t
= −

�Pz

�y
, �7f�

��
�

�t
+ �

z
*�Qxza =

�

�z
�Qyx + Qyz� , �7g�

��
�

�t
+ �

z
*�Qyza = −

�

�z
�Pxy + Pxz� , �7h�

�
�Qyxa

�t
=

�Pz

�x
, �7i�

�
�Qza

�t
=

�

�y
�Pxy + Pxz� −

�

�x
�Pyx + Pyz� . �7j�

The numerical calculation of the components of P� a and

Q� a is done through the time and space discretization of the
last system after replacing the time and space derivatives by
centered finite differences. For example, the Pxya component
is given by

Pxya
n �i, j,k� = Pxya

n−1�i, j,k�

+
�t

�
�Qz

n−1/2�i, j,k� − Qz
n−1/2�i, j − 1,k�

�y
� . �8�

To obtain the upgraded values of the total field compo-

nents �P� and Q� �, we first substitute Eqs. �6a�–�6d� in Eq. �6j�.
Second, we also substitute �6f�–�6i� in Eq. �6e�. After some
algebra, we obtain

Pz
n =

1

�1 −
sin2 � cos2 �

��vi
2 −

sin2 � sin2 �

��vi
2 �

	�Pza
n +

sin � cos �

�vi
�Qyxa

n + Qyza
n �

−
sin � sin�

�vi
�Qxya

n + Qxza
n �� , �9a�

Qz
n =

1

�1 −
sin2 � cos2 �

��vi
2 −

sin2 � sin2 �

��vi
2 �

	�Qza
n +

sin � sin �

�vi
�Pxya

n + Pxza
n �

−
sin � cos �

�vi
�Pyxa

n + Pyza
n �� , �9b�

Pxy
n = Pxya

n +
sin � sin �

�vi
Qz

n, �9c�

Pxz
n = Pxza

n , �9d�

Pyz
n = Pyza

n , �9e�

Pyx
n = Pyxa

n −
sin � cos �

�vi
Qz

n, �9f�

Qxy
n = Qxya

n −
sin � sin �

�vi
Pz

n, �9g�

Qxz
n = Qxza

n , �9h�

Qyz
n = Qyza

n , �9i�

Qyx
n = Qyxa

n +
sin � cos �

�vi
Pz

n. �9j�

A two time-step updating algorithm is used to update both
Eqs. �9� and the resulting system after discretization of Eqs.
�7�.

On the contrary of a conventional Yee’s schema, all the
field components are calculated at all time steps. Thus the

components of P� , Q� , P� a�, and Q� a, have to be determined at
t=n�t, and t= �n+1 /2��t where �t is the time step.

Finally, we remind the reader of the stability criteria that
induce a maximum value for the temporal step given by �19�
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�tmax =
min��x,�y,�z��vi

2�� − sin2 ��

vi��sin � cos �� + �sin � sin �� + �3vi
2�� − 2 sin2 ��1 − �sin � cos ����

. �10�

The next section of our paper is devoted to the validation
of our codes.

III. DEMONSTRATION OF OUR CODE ACCURACY

In order to validate the implemented codes, we will
present in this paragraph three different tests on the calcula-
tion of light diffraction by 0D, 1D, and 2D periodic struc-

tures. The 0D object corresponds to a flat interface separating
two different media, the 1D case is associated with the dif-
fraction problem by a 1D periodic structure �periodic in x,
infinite in y, and finite in z�, while the 2D case corresponds
to a biperiodic structure in the x and the y directions and
finite along the z one. Note here that the PML �20� imple-
mentation uses absorption coefficients that vary spatially ac-
cording to a polynomial law given by
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FIG. 3. Transmission and reflection coefficients versus the angle of incidence for a flat vacuum-glass interface. �a�,�c� TE polarization;
�b�,�d� TM polarization. Comparisons between analytical and FDTD coefficients are presented in �a� and �b�, while the relative errors are
depicted in �c� and �d�, respectively.
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��z� = �m	 z − zPML

N�z

m

, �11�

where m is the polynomial order fixed to 2 in this work, zPML
is the z position of the main grid-PML interface, N is the
number of the PML layers set to 10, and �z is the spatial step
according to the z direction. �m is the maximum value of
��z� that occurs at the external edge of the PML area.
Throughout all the presented simulations, the value of �m is
fixed to 6.42	10−3 S /m.

A. The 0D test

This first test consists to numerically calculate the trans-
mission or the reflection coefficient of a linearly polarized
plane wave illuminating a flat interface. The two considered
media are vacuum �
=1� and glass �
=2.25�. The two po-
larizations �TE and transverse magnetic �TM�� are studied.
Figure 3 shows the FDTD results in comparison with the
well-known analytical results of the transmission and the re-
flection versus the angle of incidence. The relative error cal-
culated as

�TFDTD−T�
T , where T is the analytical value of the

transmission, is also presented in the same figure and shows
a maximum of around 1	10−3 for ��60°. This last value is
small enough to ensure a good accuracy of our code; its
value depends on the PML parameters that can be optimized
by increasing the PML layer number and/or by decreasing
the spatial step.

B. The 1D test

In order to compare our FDTD results with already pub-
lished ones, we consider a lamellar perfectly conducting

grating that was studied in Ref. �16� on page 162. The zero-
order reflected efficiencies calculated by our code are shown
in Fig. 4 for TE and TM polarizations. In both cases, the
angle of incidence was fixed to 30° and the other geometrical
parameters are given by the insets appearing in each figure
part.

As it can be noted, a very good agreement is obtained
between our results and the ones of Fig 6.2a and 6.2b of Ref.
�16�. In that reference, a differential method was used to
perform the spectral responses of the structure and compari-
son with experimental results were also done.

C. The 2D test

This section is devoted to the study of a structure that is
biperiodic along the x and y directions and finite in the z
direction. According to us, this being the decisive test be-
cause it consists of a general study where different param-
eters for the illumination are considered. In fact, and in ad-
dition to the polarization and the angle of incidence, the
influence of the azimuthal angle is also investigated. For this
purpose, we consider the two-dimensional dielectric grating
studied in Refs. �17,21� and we compare our results with
published ones that were obtained by a vectorial modal
method �VMM�, also named modal analysis by the authors.

We have fixed our geometrical parameters according to
the ones of Ref. �17�. That leads one to set the pattern of the
unit cell of Fig. 2 to a parallelepiped having h=2 mm height
and a square section with sides of 10	10 mm2 parallel to
the x and y axes. The periods along the x and y directions are
fixed to a=b=20 mm. The dielectric permittivity is equal to

1=4 for the parallelepiped and it is set to 
2=10 for the
background. The structure is supposed to be surrounded by
vacuum from both the top and the bottom sides.

The first study consists in the calculations of the frequen-
tial response of the specular reflected energy for both TE and
TM polarizations with �=0°. This means that the incidence
plane, which is defined by the incident wave vector and the
normal to the surface, is parallel to the x axis �see Fig. 1�.

The calculated specular reflectivities for �=0°, �=15°,
and �=30° both in TE and TM are presented in Fig. 5. Com-
parisons with results obtained by the VMM method are done
and show small discrepancies, especially in the TM case. In
addition, for �=0° and TM polarization �Fig. 5�a��, three
other theoretical results are depicted and compared with our
FDTD values. One can notice here that the proposed struc-
ture is not very simple to be studied because its spectral
responses exhibit some singularities that are very hard to
handle by a theoretical or a numerical method. Nevertheless,
one notes, from Fig. 5�a�, that the FDTD results are consis-
tent and present an intermediate spectral response compared
with the other theoretical data.

These results demonstrate the good accuracy of our code.
Nonetheless, we have made further calculations in order to
show the versatility of our code even when the azimuthal
angle is changed. Thus, Fig. 6 shows the reflectivity of the
same 2D slab grating depicted in Fig. 5�d� both in TE and
TM polarizations for �=30° with respect to �.

We also compare these last results with the published ones
by Attiya and Kishk in Ref. �17� calculated at a fixed value
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FIG. 4. Zero-order reflection coefficients of a lamellar perfectly
conducting grating for the both TE in �a� and TM in �b� polariza-
tions for �=30°.
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of the frequency, i.e., f =10 Ghz. For this purpose, we make
cross sections over the two plots of Fig. 6 and we obtain the
two curves presented in Fig. 7. At first sight, one can note a
large discrepancy between the two results. This difference
can be related to the spatial discretization because the FDTD
becomes accurate only if this spatial step tends to zero. Nev-
ertheless, we have verified the convergence of the obtained
data versus the spatial step.

However, the overall behavior of the FDTD curves in Fig.
7 is very similar to the one of the VMM method and con-
firms the accuracy of our code. We think that it is necessary
to make other tests for the � dependence using another rig-
orous method such as the FMM.

IV. APPLICATION: STUDY OF A RADOME

In this last section, we present an original study of the
enhanced transmission through an annular aperture array
�AAA� made in a perfect conductor versus both angle of

incidence and polarization. This study was done recently in
the case of a real metal �6� �silver, for instance� and similar
performances for perfectly conducting structure must be
demonstrated in order to confirm the same potentialities of
the AAA in the terahertz or in the millimeter-wave domains.

In fact this particular structure, which has been proposed
by Baida et Van Labeke in 2002, presents a very high trans-
mission that can be qualified by superenhanced transmission
because it can reach 95%. This was theoretically demon-
strated following the interesting findings of Ebbesen on the
transmission by surface plasmon resonance through sub-
wavelength hole arrays engraved into a metallic layer. For
the AAA structure, the enhanced transmission is due to the
resonance of a guided mode through each annular aperture.
The cutoff wavelength of the guided mode inside the aper-
ture depends on the geometrical parameters of the coaxial
cavities �inner and outer radii, metal thickness, and with a
smaller impact the period of the array�. In addition, the na-
ture of the metal plays a key role via its dispersion. For
example, the cutoff wavelength of the guided mode can be
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FIG. 5. �Color� FDTD results
for the 2D slab grating depicted in
�d�. The first column �a�,�b�,�c�
corresponds to the TE polariza-
tion, while the two last parts �e�
and �f� show the TM case. For all
the five cases, � is fixed to 0° and
comparisons with already pub-
lished results are shown. Note that
the HFSS results are also obtained
by Attiya and Kishk �17�.
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shifted 30% toward the red region when perfect conductor is
replaced by silver.

Accordingly, AAAs present a lot of potential applications
in the electromagnetic range of the spectrum where noble

metals are perfectly conducting �far infrared, terahertz, and
millimeter wave�. Particularly, the radar radome is one of the
most interesting applications of such a structure. For this
purpose, AAA must present the same transmission response
whatever are the polarization and the angle of incidence both
for the incoming and the outgoing beams. This property, that
was already demonstrated for AAA structure made in silver
�6�, will be extended here to the perfect conductor metals
that correspond to the all noble metals behavior in the mili-
tary frequency range �10 Ghz–14 Ghz�.

For this purpose let us consider the structure depicted in
Fig. 8. It consists of a 2D array of annular apertures perfo-
rated into a h=3.6 mm thick perfect metal. The values of the
inner and the outer radii were chosen in order to have a
transmission peak in the desired range. Thus, we put Ri
=2.7 mm, Ro=3.6 mm, and we fix the period of the array to
p=12.6 mm in order to cancel the Rayleigh anomaly at nor-
mal incidence. In fact, this last appears when the first dif-
fracted order lies the grating surface, i.e., when the tangential
component of the wave vector associated with this first dif-
fracted order is equal to � /v with v being the light velocity
in the incident or in the transmission media.

In order to describe the fine details of the structure, a
nonuniform meshing is also used in the algorithm. It allows
us to faithfully characterize the geometrical features of the
apertures and of the metallic film.

Figures 9�a� and 9�b� present the transmission spectra for

10 20 30 40 50 60 70 800 90
0

0.9

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

10 20 30 40 50 60 70
0

800

6

90

0.9

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

7

8

9

10

11

12

15

14

13

6

7

8

9

10

11

12

15

14

13

� � �deg

� � �deg

F
re

q
u
e
n
c
y

(G
h
z
)

F
re

q
u
e
n
c
y

(G
h
z
)

(a)

(b)

FIG. 6. �Color� Calculated specular reflectivity by the FDTD
code of the 2D slab grating in TE �a� and TM �b� polarizations
versus �. The calculations were done between �=0° and �=60° in
order to verify the symmetry of the obtained results, and then they
were extrapolated to �=90°. For the two cases, � is set to 30°.

� � �deg

R
e
fl
e
c
ti
v
it
y

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VMM

FDTD

VMM

FDTD

� � �deg

R
e
fl
e
c
ti
v
it
y

(a) TM (b) TE

FIG. 7. �Color� Horizontal
cross sections made at f =10 Ghz
over the two plots of Fig. 6. Com-
parison with published results by
Attiya and Kishk �17�.

p

p

Ri

h=100nm
Perfect metal

Glass

x

z
y

�

�
k

inc

Vacuum

Ro
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four different values of the azimuthal angle ���, respectively,
in the cases of TE and TM polarized incident plane waves.
For the two cases, the angle of incidence is fixed at �=20°.
One can notice that, except the occurrence of Rayleigh
anomalies, the transmission response of the structure remains
quite identical when both polarization and azimuthal angle
vary. In addition, and because of the Cartesian spatial mesh-
ing even if it is nonuniform, the contours of the annular
apertures still present staircase artifacts that lead to small
alterations on the transmission response when the illumina-
tion parameters change.

Finally, the robustness of the AAA structure in the trans-
mission mode is verified also when the angle of incidence �
is varied. Figures 9�c� and 9�d� present the transmission
spectra for the two polarizations �TE and TM, respectively�
when the angle of incidence is varied for zero up to 40°. One
can note that in the TM case, the influence of the Rayleigh
anomalies appears as discontinuities and alters the transmis-
sion spectra. To bypass this problem, the geometrical param-
eters of the AAA structure should be defined in order to drive
away these anomalies from the transmission peak �6�.

V. CONCLUSION

The 3D-FDTD algorithm is adapted for oblique incidence
in the case of periodic structures. Both PML ABCs and spa-
tial nonuniform meshing are incorporated. According to us,
this is an essential and unavoidable numerical tool for the
study of light interaction with subwavelength structures.
Tests were presented in order to demonstrate the accuracy of
this algorithm. An original application is also performed with
this code and shows a very interesting transmission property
of annular aperture arrays. We are working to extend this
algorithm to incorporate a dispersion model �Drude or
Drude-Lorentz model� for the consideration of dispersive
material such as noble metals in the visible range. This last
point is of major interest because it allows the study of light
interaction with metallodielectric structures that are exten-
sively used in nanooptics.
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